NEDOは「超先端材料超高速開発基盤技術プロジェクト」に取り組んでおり、今般、産業技術総合研究所と共同で、高周波回路などに使われる金属張の誘電体基板に対し、誘電率と導電率の温度特性を10 GHz~100 GHz超の超広帯域で計測する技術を確立しました。本技術では、温度制御を可能にした超広帯域動作の共振器を開発することにより、これまで未確立であった、室温から100 ℃までの温度域での超広帯域のミリ波帯材料計測を実現しました。
これにより、幅広い温度域での低損失化が要求されるミリ波対応材料の開発を後押しするとともに、ミリ波を用いた次世代高速無線通信のポスト5 G・6 G実現に向けた材料やデバイスの開発期間の大幅な短縮が期待されます。
国立研究開発法人新エネルギー・産業技術総合開発機構(NEDO)は2016年度から、「超先端材料超高速開発基盤技術プロジェクト(以下、超超PJ)※1」で高度な計算科学や高速試作・革新プロセス技術、先端計測評価技術の三位一体による有機・高分子系機能性材料の高速開発に取り組んでいます。材料の開発や多様な応用展開に向けた材料組成、プロセスの最適化条件の予測にあたっては、高度な計算科学とともに、材料の先端計測技術が基盤技術と位置付けられています。
有機・高分子系機能性材料は、日本の素材産業が高い競争力を持つ分野で、省エネ効果のほか複合化による多種類の機能発現などが期待されています。一方、ポスト5 G・6 G※2などミリ波※3を用いた高速大容量無線通信では動作周波数の高周波化に伴い回路基板の伝送損失が増大し、消費電力が増加してしまう課題があり、ミリ波対応材料の低損失化が求められています。ミリ波対応材料の設計・開発では、誘電体基板の誘電率※4と基板表面に形成される金属層の導電率が回路の伝送損失を決めるパラメーターとなります。従来技術では室温環境下においてミリ波帯での材料の誘電率や導電率を計測することは可能でしたが、屋外設置のアンテナ・レーダーなどの回路やデバイスで想定される幅広い使用温度域における計測技術は確立できておらず、実使用環境下で想定される幅広い温度域での低損失化に向けた材料開発の支障となっていました。
そこで、NEDOと国立研究開発法人産業技術総合研究所(産総研)はこのたび超超PJにおいて、新たに温度制御可能な超広帯域動作の共振器※5(図1)を開発しました。この共振器を用いることで、材料設計の基盤となる計測技術として、高周波回路などに使われる金属張※6の誘電体基板に対し誘電率と導電率の温度特性を10 GHz~100 GHz超の超広帯域で計測する技術を確立しました。
なお、この技術の詳細は、2021年8月30日に学術誌「Applied Physics Letters」に掲載されました。
図1 今回開発した、ミリ波帯での材料の温度特性計測に用いる共振器
NEDOと産総研は、高周波回路(図2)に使用する材料の誘電率と導電率の温度特性を10 GHz~100 GHz超の超広帯域で計測するため、温度制御可能な超広帯域動作の共振器を開発しました。この装置は、ミリ波帯での超広帯域な材料計測が可能な平衡型円板共振器に対し、銅板に埋め込んだヒーターと熱電対で共振器を局所加熱して温度制御することで、大型の恒温チャンバーや耐熱性ミリ波ケーブルなど大掛かりで高コストな部材を用いることなく、100 GHz超までの超広帯域にわたる材料計測を室温から100 ℃までの温度域で行えます。
なお今回開発した温度特性計測技術の有効性を検証するため、シクロオレフィンポリマーと合成石英を対象に誘電率(比誘電率※7と誘電正接※8)の温度依存性を計測しました(図3)。また、シクロオレフィンポリマーについては基板表面に形成した金属層の導電率の温度依存性も計測しました(図4)。
誘電体基板材料の誘電率と導電率の温度特性を実験的に把握することにより、材料設計・開発へのフィードバックだけでなく、計測した材料を使った回路性能やデバイス性能の温度依存性の推定が可能になります。たとえば、誘電率と導電率の温度特性の計測結果を用いたシミュレーションにより、シクロオレフィンポリマー基板で構成された回路の125 GHzにおける単位長さ当たりの伝送損失(dB/cm)は、25 ℃から100 ℃への温度上昇に伴い、約18 %増大することがわかりました(図5)。
超超PJにおいて、産総研は今回開発した材料計測技術と計算科学やプロセス技術を融合し、より良い物性値となるミリ波対応材料を得るための分子構造や配合比、プロセスなどの最適化条件を予測できるようにデータプラットフォーム※9の拡充に取り組みます。
今回開発した技術によって、幅広い温度域での低損失化が要求されるミリ波対応先端材料の開発を後押しするとともに、材料の開発段階で回路・デバイスの実使用環境下における温度域での特性を高精度に推定できるようになります。これにより、材料およびデバイスの開発期間の大幅な短縮が期待できます。