国立大学法人 東京工業大学、株式会社 リコー、国立研究開発法人 産業技術総合研究所の研究グループは、消費電力が極めて低い小型の原子時計(用語1)を開発した。この原子時計は、構成部品のひとつである周波数シンセサイザ(用語2)の消費電力を大幅に削減し、さらに新たな量子部パッケージ(用語3)を用いることで温度制御の効率を向上させ、60 mWという低消費電力と15 cm3という極小サイズを実現している。
この研究成果は、大型で消費電力が大きかった原子時計のサイズおよび消費電力を大幅に削減することで、これまで搭載が難しかった自動車やスマートフォン、小型衛星など、様々な機器に原子時計を搭載可能となり、自動運転、高精度な測位、新たな衛星ネットワークの実現を大きく加速させる可能性がある。
研究成果の詳細は、2月17日から米国サンフランシスコで開催される国際会議ISSCC(IEEE International Solid-State Circuits Conference <国際固体素子回路会議>2019)で発表される。
※本研究開発の成果の一部は、国立研究開発法人新エネルギー・産業技術総合開発機構(NEDO)の委託業務の結果得られたものである。
1927年に正確な時を刻む水晶振動子を用いる時計が発明された。それ以来、この仕組みは腕時計などにも搭載されて普及し、人々がお互いに正確な時刻を共有することが当たり前という社会システムを支える技術的根幹の一つとなっている。現在、大型の原子時計を時刻の基準とし、水晶発振器を同期させることで時刻を得ているが、原子時計を小型化して水晶発振器の代わりとして利用することができるようになれば、大きな技術的・社会的変革が得られるとして、汎用な小型原子時計の実現に対する期待が年々高まっている。
米国のGPSに代表される衛星測位システムでは、衛星間で時刻同期が必要で、原子時計を用いる事で安定的かつ高精度な測位が可能となる。汎用な小型原子時計が実用化されれば、自動車やスマートフォン、超小型衛星、携帯電話の基地局などの様々な機器で利用できる。また、ビル屋内、海底、トンネル、橋梁などGPSの届かない場所での大型構造物のモニタリング(高精度計測)に用いる複数センサ間の時刻同期や、複数の人工衛星を使った低軌道衛星コンステレーション(用語4)による地球規模インターネットの実現、自動車や航空機等の移動体における安定的かつ高精度な測位、またそれによる自動運転技術の実現が期待される。
従来の原子にマイクロ波を照射する共振器を持つタイプの原子時計では、共振器の大きさでサイズが決まり小型化できない問題点があった。そこで、コヒーレントポピュレーショントラッピング(CPT用語5)を用いて、マイクロ波で変調したレーザー光を原子に照射するだけで時間の基準となる正確なマイクロ波周波数の検出が可能となり、これまで数百cm3のサイズだった原子時計を一桁以上小型化することができた。しかしながら、周波数シンセサイザや、レーザーを駆動するためのドライバ回路といった原子時計の構成要素は、それぞれ非常に高い精度を求められるため、消費電力を下げることが難しく、結果として、原子時計全体の消費電力が数百mWと高くなってしまう課題があった。
今回、高精度でありながら2 mWという超低消費電力な周波数シンセサイザの実現および新たな量子部パッケージによる温度コントロールの効率化で、60 mWの超低消費電力な小型原子時計(ULPAC: Ultra-Low-Power Atomic Clock)の開発に成功した(図1)。開発した小型原子時計は、消費電力を大幅に削減しながら、大型の原子時計とほぼ同等の1日で300万分の1秒以下の精度を達成した。この原子時計は、電圧制御水晶発振器(用語6)、周波数シンセサイザ、レーザーのドライバ回路、制御回路、セシウム133原子(用語7)へのレーザー光照射を行う量子部パッケージ(図2)で構成される。
CPTを利用した原子時計では、セシウム133原子に2つの周波数のレーザー光を照射する。この2つのレーザー光の周波数差がセシウム133原子に固有の共鳴周波数(9,192,631,770 Hz)に一致したときに、検出される光強度が最大となる。これを利用して電圧制御水晶発振器を校正し、原子時計の基準となる非常に安定した周波数を作りだしている。
周波数シンセサイザは、レーザー光の周波数差を0.3 mHz以下の非常に細かい周波数ステップで変えるために用いられ、従来、原子時計の構成要素において50 mW以上の大きな電力を占める構成部位だった。開発した原子時計は、周波数シンセサイザをCMOS集積回路(図3)で作りこむことで、消費電力を25分の1以下まで削減することに成功、2 mWの消費電力を達成した。
さらに、新たな量子部パッケージの構造を採用し、ヒーターによる温度制御の際に、外部の温度が伝わりにくくなるような隔離機構を設けるとともに、パッケージ内部を金でコーティングした。温度制御の効率を向上させることで、電力を消費しがちなヒーターの消費電力を9 mWまで削減した。高安定レーザードライバ回路および高精度温度制御回路により長期間での周波数安定性も改善した。
従来の周波数標準器では、図4に示すように、消費電力と周波数安定度はトレードオフの関係にあったが、開発した原子時計(ULPAC)は、良好な周波数安定度と低い消費電力を両立しており、サイズも15 cm3と非常に小型である。今回、105秒(約1日)の平均化時間で2.2×10-12の長期周波数安定度を達成した。一般的な水晶発振器を搭載した時計と比べ、約10万倍も正確な時計を実現した。