国立研究開発法人 産業技術総合研究所【理事長 中鉢 良治】(以下「産総研」という)知能システム研究部門【研究部門長 河井 良浩】ヒューマノイド研究グループ 金広 文男 研究グループ長、金子 健二 上級主任研究員、阪口 健 主任研究員らは、人間の重労働作業や危険な環境での作業を自律的に代替することを目指した人間型ロボットの試作機HRP-5Pを開発した。
HRP-5PはHRPシリーズの技術を継承しながら最新のハードウエア技術を活用した身長182 cm、体重101 kgの人間型ロボットで、HRPシリーズ最高の身体能力を備える。これに環境計測・物体認識技術、全身動作計画・制御技術、タスク記述・実行管理技術、高信頼システム化技術からなるロボット知能を搭載することで、建築現場での代表的な重労働作業である石膏ボード施工の自律的な遂行を実現した。HRP-5Pを産学連携の開発プラットフォームとして活用することにより、建築現場や航空機・船舶などの大型構造物組立での人間型ロボットの実用化に向けた研究開発が加速することが期待される。
なお、今回開発した技術の一部は10月1日〜5日にスペイン・マドリードで開催されるIEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2018)で発表する。また10月17日〜21日に東京ビッグサイト(東京都江東区)で開催されるWorld Robot Expo 2018にて静態展示を行う。
|
HRP-5Pの外観(左)と約13 kgのパネル搬送(右) |
少子高齢化に伴い、建設業など多くの業種が今後深刻な人手不足に陥ると見込まれており、これをロボット技術によって解決することが急務となっている。また、建築現場や航空機・船舶の組み立てなどの非常に大きな構造物を組み立てる現場では、作業員が危険な重労働作業を行っており、これらの作業をロボット技術によって代替することが望まれている。しかしこれらの大型構造物の組立現場では、ロボットに合わせた作業環境の整備が難しくロボットの導入が進んでいない。人間型ロボットは人間と類似した身体構造を持つので作業環境を変えずに人間の作業を代替でき、重労働作業からの解放が可能となる。
産総研は、川田工業株式会社(現 カワダロボティクス株式会社)を始めとした複数の民間企業と協力してHRPシリーズを開発し、実用化に向けた基盤技術の開発に取り組んできた。HRP-2では二足歩行、寝転び・起き上がり動作、隘路歩行などを実現し、HRP-3では滑りやすい路面での歩行や遠隔操作による橋梁のボルトを締める作業を可能とした。産総研が2011年から取り組んできた災害対応人間型ロボットの研究では、HRP-2の身体能力(手足の長さや可動範囲、関節出力など)を向上させたHRP-2改により、環境の3次元計測に基づく不整地歩行やバルブ回しなどの作業の半自律実行を実現してきた。しかし、石膏ボード壁面施工のような重労働作業には身体能力が不足し、また、複雑な環境での人間の運動を模擬するには関節数や関節の可動範囲が十分ではなかった。そのため、産総研は、人間の重労働作業を代替できる身体能力を備えた人間型ロボットHRP-5Pを開発することとした。
なお、HRP-5Pは、HRPシリーズの開発技術を継承するとともに、本田技研工業株式会社の特許権を実施することにより利用している。
今回の開発の一部は国立研究開発法人 新エネルギー・産業技術総合開発機構(以下「NEDO」という)から委託された「次世代ロボット中核技術開発/(革新的ロボット要素技術分野)自律型ヒューマノイドロボット/非整備環境対応型高信頼ヒューマノイドロボットシステムの開発」、独立行政法人 日本学術振興会の科学研究費補助金「環境モデル獲得に基づくヒューマノイドロボットの未知環境適応全身移動計画法の実現」(課題番号:JP17H07391)の支援により行った。
重労働作業の代替を目指し、強靭な身体と高度な知能を兼ね備え、ロボット単体で自律的な作業ができる人間型ロボットの試作機HRP-5Pを開発した。
-
身長182 cm、体重101 kgで首部2自由度、腰部3自由度、腕部各8自由度、脚部各6自由度、ハンド部各2自由度の合計37自由度を備え、ハンド部を除く自由度数ではHRPシリーズで最大。HRP-2改に比べて、腰に1自由度、腕部付け根に1自由度が追加されたため、より人間に近い動作が可能。これにより石膏ボード(1820 × 910 × 10 mm、 約11 kg)やコンパネ(合板)(1800 × 900 × 12 mm、 約 13 kg)のような大きな対象物の両腕でのハンドリングが可能となった。
-
人間よりも自由度数が少ないロボットで人間の動作を模擬するため、複数の関節が集中する股関節部や腰関節部でも、最大限の可動範囲を確保。例えば脚を屈曲・伸展させる股関節の可動範囲は人間の140度に対してHRP-5Pは202度(図1)、上体を旋回させる腰関節の可動範囲は人間の80度に対してHRP-5Pは300度。これにより深く屈み込んで上体をひねった姿勢などさまざまな姿勢での作業が可能となった。
-
高出力モーターの採用、駆動機構への冷却導入、および一部の関節での複数モーターによる関節駆動方式の採用により、HRP-2改に比べて関節トルク、速度ともに平均で約2倍に向上。これにより石膏ボードを平積み状態から持ち上げるような、重負荷作業が可能となった(腕を水平に伸ばした状態での片腕の可搬重量がHRP-2改の1.3 kg、HRP-4の0.9 kgに対し、HRP-5Pでは2.9 kg)。
-
頭部複合センサーを用いて、常時(0.3 Hz)周辺環境を3次元計測。計測結果の蓄積や記憶の更新により作業対象物で視野が制限される状況でも搬送の歩行計画や足部の滑りなどに対する歩行の補正が可能となった(図2)。
-
新たに構築した作業対象物の画像データベースを用いて畳み込みニューラルネットワークの学習を行い、2次元画像の10種の対象物領域を背景や照明の条件が悪い状況でも90 %以上の高精度で検出可能となった(図3)。
-
ロボットシミュレーターChoreonoid上にロボット知能の仮想テスト環境を構築し、24時間ソフトウエアのリグレッションを監視することで約25万行の大規模ソフトウエアの品質を維持し、信頼性の高いロボットシステムを構築することが可能となった。
以上の技術の統合により、大型重量物のハンドリング、搬送が必要な石膏ボード壁面施工を、模擬住宅建築現場でHRP-5P単体で自律的に遂行することを実現した。
具体的には、以下の一連の動作である。
-
① 周辺環境の3次元地図生成と物体検出を行い、作業台に近づく。
-
② 作業台に寄りかかりながら平積みされた石膏ボードを1枚ずらし、持ち上げる。
-
③ 周辺環境を認識しながら石膏ボードを壁まで搬送する。
-
④ 石膏ボードを降ろし、壁に立てかける。
-
⑤ 高精度ARマーカーを用いて工具を認識し、拾い上げる。
-
⑥ 胴縁を握って安定性を確保しながら壁に石膏ボードをビスで固定する。
|
図4 HRP-5Pによる自律的な石膏ボード壁面施工 |
HRP-5Pを人間型ロボットの実用化を目指した研究開発プラットフォームとして産学連携による活用を促進する。プラットフォーム上でロボット知能の研究開発を進めて、ビル・住宅、航空機や船舶などの大型構造物組立現場でのさまざまな作業の自律的代替を目指す。これにより作業員不足を補うとともに、人間を重労働作業から解放し、より付加価値の高い作業に注力することを支援する。