First demonstration of ultra-small III-V/Ge CMOS transistors A breakthrough technology for next generation high-performance CMOS transistors of different alternative channel materials

We have proposed the alternative channel materials and a new engineering process in order to realize next generation highperformance CMOS transistors for 16 nm generation. We have developed a scalable III-V/Ge CMOS technology with common metal source/drain and gate electrodes, and III-V/Ge CMOS operation with gate length of less than 100 nm has been verified for the first time.

Nanotechnology, Materials and Manufacturing

New recyclable green catalyst Efficient catalyst for oxidation reaction using metal-complex-type organic nanotubes

We have discovered that nickel-complex-type organic nanotubes (Ni-ONTs) function as the catalyst for oxidation reactions of various organic compounds, indispensable for industries, in water at room temperature. Ni-ONTs were synthesized by the mass production method developed by AIST. Ni-ONT can be synthesized by the simple operation of mixing inexpensive an amphiphilic molecule, glycylglycine connected with a fatty acid, and nickel salt in solvents. Because all nickel ions are exposed on the inside and the outside surfaces of the nanotube, Ni-ONT is expected to provide excellent catalytic sites. Since Ni-ONT is solid in water, it can be easily recovered through filtration after catalytic reactions and is also recyclable. Therefore, Ni-ONT is expected to contribute to green innovation.

Schematic illustration and electron microscope image of Ni-ONT

Masaru AOYAGI

Nanotube Research Center masaru-aoyagi@aist.go.jp AIST TODAY Vol.11 No.10 p.18 (2011)