Hydrogen sensor using Mg-Ni switchable mirror thin film Visualization of hydrogen gas diffusion

We developed a new hydrogen sensor using Mg-Ni switchable mirror thin film. It can be operated without heating with a wide detection range. Also combination use of a switchable mirror thin film and slab wave guide enables to realize a hydrogen sensor with high sensitivity. Using a switchable mirror thin film coated sheet, we can visualize hydrogen diffusion process directly, which is a new way of hydrogen sensing by means of our eyes. This hydrogen visualization sheet will be commercialized shortly.

Metrology and Measurement Science

Development of acceleration standard for safety evaluation Calibration technique supporting acceleration measurement up to 5,000 m/s²

Shock acceleration measurement is widely used in a variety of applications including air-bag control of automobiles and drop testing of mobile instruments, in which accelerometers are a key device to evaluate human safety or product reliability. However, vibration acceleration available in the calibration service of accelerometers has been limited to several hundreds of m/s^2 due to the performance of vibration exciters. Therefore, it is desired to establish a calibration service up to 10,000 m/s² to cover recent industrial demands. Here we have developed a shock acceleration calibration system to calibrate the sensitivity of accelerometers precisely. The developed calibration system can calibrate accelerometers with the expanded uncertainty (*k*=2) of less than 0.8 % in the range from 200 m/s² to 5,000 m/s².

Hideaki NOZATO

Metrology Institute of Japan hideaki.nozato@aist.go.jp AIST TODAY Vol.10 No.10 p.11 (2010)

Shock acceleration calibration system (top) and schematic diagram of shock acceleration exciter (bottom)