Automated carbohydrate synthesizer "GolgiTM"

Shin-Ichiro Nishimura

Drug-Seeds Discovery
Research Laboratory
(Research Center for
Glycoscience)

E-mail: tiger.nishimura@aist.go.jp

Hiroki Shimizu

E-mail: hiroki.shimizu@aist.go.jp

Hiroshi Hinou

E-mail: h.hinou@aist.go.jp

AIST TODAY Vol.6, No.2 (2006) p.22-23 An automated carbohydrate-synthesizer (glycoconjugate-synthesizer) "GolgiTM" was developed by mimicing biosynthetic system of the Golgi apparatus in cells. The system was improved by using tailored-magnetic beads for immobilizing glycosyltransferases and fine-filter membrane system to achieve fully-automated synthesis in 36 or 96-well reaction vessels. It was demonstrated that combined use of "GolgiTM" with a conventional peptide-synthesizer gives high throughput parallel synthesis of biologically important glycopeptides.

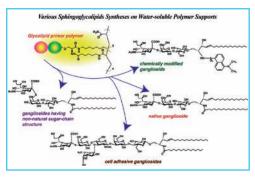


Figure 1: Application for glycolipid synthesis.

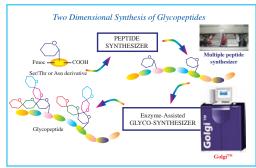


Figure 2: Strategy of the glycopeptide synthesis

Nanotechnology, Materials & Manufacturing

A novel intergrowth form of TiO₂ between rutile- and ramsdellite-type structure

Titanium dioxide with a new crystal structure was synthesized upon heating the ramsdellite-type TiO_2 . The new form has an intergrowth structure between the rutile- and ramsdellite-type ones. The band gap can be controlled from 3.34 eV to 3.00 eV upon heating, accompanying a continuous structural change. As the electronic structures can be controlled by the heating temperatures, the new form of TiO_2 will be expected as candidate photofunctional materials.

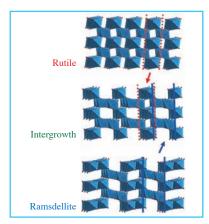


Figure 1: Crystal structures of rutile-type, the hypothetical intergrowth with ramsdellite and rutile (1:1) domains and ramsdellite-type TiO₂, respectively.

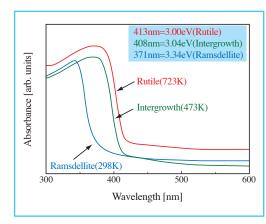


Figure 2: UV-Vis absorption spectra for as-repared ramsdellite-type ${\rm TiO_2}$ at 298 K, after calcinations at 473 K and 723 K, respectively.

AIST TODAY Vol.6, No.2 (2006) p.24-25