Development of High-Speed CVD Process on SiC Homoepitaxial Growth

We have carried out the epitaxial growth of 4H-SiC by CVD method with the various growth conditions. We found that the C/Si ratio influences strongly on the surface morphology of epilayers, and that the window of the C/Si ratio bringing about mirrorlike surfaces becomes narrow with the increase of growth rate. We also found that the change from mirror to rough with the growth conditions is abrupt, and that it is

important to introduce the process gases in the early growth stage. Based on these results, we have achieved two orders in magnitude higher than usual growth rates.

The relationship between the C/Si ratio and the growth rate

Yuuki ISHIDA

Power Electronics Research Center e-mail: y-ishida@aist.go.jp AIST Today Vol. 4, No.6 (2004) 15

Development of Alternative Cleaning Agent

The development of environmental friendly alternatives to prevent the depletion of the ozone layer and global warming is necessary for a sustainable society. In this research, 6 HFEs (Hydrofluoroethers) have been developed as new alternative cleaning agents. These HFEs were selected out of 88 compounds by various evaluations such as physical properties, toxicity and atmospheric life time. Also, we developed an efficient synthetic process of HFEs using water as a solvent in the addition reaction of alcohol to fluorinated olefin.

HFE-347pc-f (CHF₂CF₂OCH₂CF₃) has been already commercialized, and its use will be extended further.

Evaluation of 12 fluorinated ethers for alternative cleaning agent

•	Diructure RITE name	8p. (0)	Properties	Parrobity	Stubility	Toxicities	(peer)	Selection
1	HFE-343mct	45.9	0	0	0	0	5.7	0
2	CF_CHFCF_OCH_	54.3	0	0	0	0	2.1	0
3	сня дя рондя,	56.2	0	0	0	0	6.0	0
4	CF_CH_CCF_CH_F HFE-350m1-c	65.0	0	0	0	0		
5	HEE-domman	69.9	0	0	×	×		×
6	CF2CF2CH2OCF2CHF2 HFE-449ectic	70.3	0	0	0	۵		×
7	CF_CHFCF_OCH_CF_	72.7	0	0	0	0	7.0	0
	сна да сносна	75.5	0	0	ж	×	4.0	ж
p	CF_CHPCF_OCH_CF_CF_ HFE-54-11mec.f	87.5	0	0	0	0	6.7	0
10	CF_CHFCF_CH_DCHF_ HFE-450necf	88.4	0	0	0	0		-
1	сна да сноса сна,	93.2	0	0	0	ж		ж
12	CF CHECK OCH CF CHE	105.9	Ő	0	0	Ő	4.0	0

Junji MIZUKADO

Research Institute for Innovation in Sustainable Chemistry e-mail: mizukado-junji@aist.go.jp AIST Today Vol. 4, No.6 (2004) 19