Energy Networks in the Future

The mission of the Energy Network Group of Energy Electronics Institute (EEI) is to present new concepts of future energy networks and systems, where fuel cells and hydrogen will play an important role.

The systems involve electricity, hot water and hydrogen networks and interconnection of consumers. Fuel cells will be installed in some of the consumers. Fig. 1 represents an example for residential houses.

The system provides cooperative operation of equipment and energy interchange among the houses. The CO₂ emission and primary energy consumption will be reduced significantly. Both experimental systems and PC-based simulators are being developed for quantitative analyses.

Hiroshi AKI

Energy Electronics Institute e-mail: h-aki@aist.go.jp AIST Today Vol. 4, No.1 (2004) 19

Nanotechnology and Materials Science & Technology

Improvements in Current-Density of $YBa_2Cu_3O_{7-\delta}$ Films on Sapphire Buffered with Atomically-Flat CeO₂ Having High Density of Nanodots

YBa₂Cu₃O_{7- δ} (YBCO) films was fabricated on CeO₂-buffered R-cut sapphire substrate by pulsed laser deposition. Prior to the YBCO deposition, a selfassembly process was performed where high-temperature (1025°C) O₂ annealing induces surface reconstruction of CeO₂ on sapphire substrates. The results re-

AFM images and corresponding profiles of a 36.6-nm-thick CeO_2 film grown on R-cut sapphire (a) before and (b) after high-temperature O_2 annealing at 1025°C

veal an atomically flat surface of CeO₂ film, superior crystalline quality, and the formation of a high density of nanodots on top of the CeO₂ layer (Fig.1). YBCO films grown on such CeO₂-buffered sapphire substrates had a high $T_{c \rho=0}$ (> 90 K) and a high J_c (> 3.0 × 10⁶ A/cm² at 77.3 K and 0T, see Fig.2).

Critical current density J_{\circ} as a function of temperature at 0 T for two typical 200-nm-thick YBCO films on R-cut sapphire (a) with a 33-nm-thick annealed CeO₂ buffer layer and (b) with a 33-nm-thick asgrown CeO₂ buffer layer

Jiacai NIE

Energy Electronics Institute e-mail: jc-nie@aist.go.jp AIST Today Vol. 4, No.3 (2004) 16