Evaluation of Measurement Uncertainty

Hideyuki TANAKA

Metrology Institute of Japan e-mail: tanaka-hideyuki@aist.go.jp AIST Today Vol. 3, No.12 (2003) 24 We have developed new computer programs for evaluation of uncertainty in measurement. One of the programs is to perform the analysis of variances (ANOVA) in which the expression for expectation of each variance can be symbolically generated. This software is expected to greatly reduce labor required in uncertainty evaluations.

The other program is to evaluate the uncertainty of gear tooth profile measurement using Monte Carlo simulation. We formulated a geometrical model for a gear measurement machine, and constructed a "virtual-machine" in a computer. The uncertainty of gear tooth profile measurement is calculated from the geometrical errors of the virtual-machine. This program can be applied to most of the gear measurement machines.

					Sector and a sector sector	
	D	0			c	
- Not	SUIT OF ANOVA					
2	Eactor	0			V	
	Faucor	8				
	¢ (901011 43019999		1	001011 63012919	
		JUGGITT OT CALLER		-	POPOTITI PI CLEELE	
	First order re	gression coefficienter rep	ression coeffi	oient		
tD 01		3.54075	8.3333	3E-06		
					second and the second second	
12 I	first order (150442. 92675000		1	150442. 92675000	
a I	second order	0.00002778		1	0.00002778	
14 I	residual (I)	0.00000000		0	0.00000000	
15		3.77777778		3	1.25925926	
1 P		6.98877778		2	3, 49438889	
17 I	*P	0.99788889		6	0.16631481	
1 9	rror4	9.87855556		166	0.05950937	
				_		
20 S		150404. 56977778	A			
***/#0	ve besut/leaun of reader (Neoun	WWW, MARLIE MOVE /DESCRIPTION OF THESE P.	1 # Exp	ectat	ion of Variance	
			2			
			2			
			- A	σ	e32+15 or A2	
			6 B	σ	e32+5 or AxB2+20 or B2	
			P AB	σ	e32+5 // Ax82	
			a E3	σ	e32	

Geological Survey and Geoscience

Geological Study of Fuji Volcano, Japan - for evaluation of evolving volcano -

Akira TAKADA

Institute of Geoscience e-mail: a-takada@aist.go.jp AIST Today Vol. 3, No.10 (2003) 14 The mapping of Fuji volcano including trench surveys of more than 30 sites are carried out in Geoscience Institute, AIST. Evolution of Fuji volcano is investigated quantitatively with dating. For example, many historical fissure eruptions are discovered (Fig.). Moreover, time series diagrams of cumulative eruptive volume and fissure eruption sites younger than BC200 shows various timedependant patters in response to changes of boundary conditions such as magma supply rate and stress field.

Distribution of fissure eruptions younger than BC200

Example of ANOVA program output